Calculating electric field: two point charges $(++)$

Find the electric field a distance z above the midpoint between two equal charges (q) , a distance d apart.

 \rightarrow Let \mathbf{E}_1 be the field of the left charge alone, and \mathbf{E}_2 that of the right charge alone Vectorially adding them the horizontal components cancel and the vertical components add up.

$$
E_z = 2 \frac{1}{4\pi\epsilon_0} \frac{q}{\nu^2} \cos\theta.
$$

Here $\alpha = \sqrt{z^2 + (d/2)^2}$ and $\cos \theta = z/\lambda$, so

$$
\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{2qz}{\left[z^2 + (d/2)^2\right]^{3/2}} \hat{\mathbf{z}}.
$$

Check: When $z \gg d$ you're so far away that it just looks like a single charge

2q, so the field should reduce to $\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{2q}{z^2} \hat{\mathbf{z}}$. And it *does* (just set $d \to 0$ in the formula).

EPHY111L, B.Tech. Sem I, 2023 Dr. Poulomi Sadhukhan

Z q $dl2$

Calculating electric field: two point charges (+ -)

What happens when charges are of same magnitude but opposite sign?

Now the vertical components cancel, resulting in

$$
\mathbf{E} = \frac{1}{4\pi\epsilon_0} 2 \frac{q}{\lambda^2} \sin \theta \,\hat{\mathbf{x}}, \text{ or}
$$

$$
\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{qd}{\left(z^2 + \left(\frac{d}{2}\right)^2\right)^{3/2}} \,\hat{\mathbf{x}}.
$$

From far away, $(z \gg d)$, the field goes like $\mathbf{E} \approx \frac{1}{4\pi\epsilon_0} \frac{qd}{z^3} \hat{\mathbf{z}}$

Calculating electric field: line charge

Find the electric field a distance z above the midpoint of a straight line segment of length 2L carrying a uniform line charge λ

$$
\mathbf{r} = z \hat{\mathbf{z}}, \quad \mathbf{r}' = x \hat{\mathbf{x}}, \quad d l' = dx;
$$
\n
$$
\mathbf{r} = \mathbf{r} - \mathbf{r}' = z \hat{\mathbf{z}} - x \hat{\mathbf{x}}, \quad \lambda = \sqrt{z^2 + x^2}, \quad \hat{\mathbf{z}} = \frac{\mathbf{z}}{2} = \frac{z \hat{\mathbf{z}} - x \hat{\mathbf{x}}}{\sqrt{z^2 + x^2}}
$$
\n
$$
\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_{-L}^{L} \frac{\lambda}{z^2 + x^2} \frac{z \hat{\mathbf{z}} - x \hat{\mathbf{x}}}{\sqrt{z^2 + x^2}} dx
$$
\n
$$
= \frac{\lambda}{4\pi\epsilon_0} \left[z \hat{\mathbf{z}} \int_{-L}^{L} \frac{1}{(z^2 + x^2)^{3/2}} dx - \hat{\mathbf{x}} \int_{-L}^{L} \frac{x}{(z^2 + x^2)^{3/2}} dx \right]
$$
\n
$$
= \frac{\lambda}{4\pi\epsilon_0} \left[z \hat{\mathbf{z}} \left(\frac{x}{z^2\sqrt{z^2 + x^2}} \right) \Big|_{-L}^{L} - \hat{\mathbf{x}} \left(-\frac{1}{\sqrt{z^2 + x^2}} \right) \Big|_{-L}^{L} \right]
$$
\n
$$
= \frac{1}{4\pi\epsilon_0} \frac{2\lambda L}{z\sqrt{z^2 + L^2}} \hat{\mathbf{z}}.
$$

For points far from the line ($z \gg L$),

$$
E \cong \frac{1}{4\pi\epsilon_0} \frac{2\lambda L}{z^2}.
$$

Calculating flux: point charge

What is the flux through the shaded face of the cube due to the charge q at the corner?

$$
\int_{surf} \mathbf{E} \cdot d\mathbf{a} ??
$$

$$
24\int_{surf} \mathbf{E} \cdot d\mathbf{a} = \frac{q}{\epsilon_0}
$$

$$
\left(\oint_{surf} \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}\right)
$$

$$
\int_{surf} \mathbf{E} \cdot d\mathbf{a} = \frac{1}{24} \frac{q}{\epsilon_0}
$$

Calculating electric field: charge distributed in sphere

Find the electric field outside a uniformly charged solid sphere of radius R and total charge q.

Imagine a spherical surface at radius $r > R$; $Q_{\text{enc}} = q$

$$
\oint\limits_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}}
$$

symmetry allows us to extract E from under the integral sign: E certainly points radially outward, as does $d\mathbf{a}$, so we can drop the dot product, and the *magnitude* of E is constant over the Gaussian surface, so it comes outside

$$
\int_{S} \mathbf{E} \cdot d\mathbf{a} = \int_{S} |\mathbf{E}| d a = |\mathbf{E}| \int_{S} da = |\mathbf{E}| 4\pi r^{2} = \frac{1}{\epsilon_{0}} q
$$

Therefore.

 $\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$

Notice a remarkable feature of this result: The field outside the sphere is exactly the same as it would have been if all the charge had been concentrated at the *center.*

How to choose Gaussian surface?

Gauss's law is always *true*, but it is not always *useful*. If ρ had not been uniform (or, at any rate, not spherically symmetrical), or if I had chosen some other shape for my Gaussian surface, it would still have been true that the flux of **E** is q/ϵ_0 , but E would not have pointed in the same direction as $d\mathbf{a}$, and its magnitude would not have been constant over the surface, and without that I cannot get $|E|$ outside of the integral. Symmetry is crucial to this application of Gauss's law.

- 1. Spherical symmetry. Make your Gaussian surface a concentric sphere.
- 2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder
- 3. Plane symmetry. Use a Gaussian "pillbox" that straddles the surface

Cylindrical Gaussian surface

A long cylinder carries a charge density that is proportional to the distance from the axis: $\rho = ks$, for some constant k. Find the electric field inside the cylinder.

Draw a Gaussian cylinder of length *l* and radius *s*. For this surface, Gauss's law states:

$$
\oint\limits_{S} \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}}
$$

The enclosed charge is

$$
Q_{\text{enc}} = \int \rho \, d\tau = \int (ks')(s' \, ds' \, d\phi \, dz) = 2\pi kl \int_0^s s'^2 \, ds' = \frac{2}{3}\pi kl s^3.
$$
\n
$$
\longrightarrow \text{integrated } \phi \text{ from 0 to 2}\pi, \, dz \text{ from 0 to } l.
$$

Now, symmetry dictates that E must point radially outward, so for the curved portion of the Gaussian cylinder we have:

$$
\int \mathbf{E} \cdot d\mathbf{a} = \int |\mathbf{E}| d a = |\mathbf{E}| \int da = |\mathbf{E}| 2\pi s l,
$$

since, $|\mathbf{E}| 2\pi s l = \frac{1}{\epsilon_0} \frac{2}{3} \pi k l s^3 \longrightarrow \mathbf{E} = \frac{1}{3\epsilon_0} k s^2 \hat{\mathbf{s}}.$

Hen

EPHY111L, B.Tech. Sem I, 2023 Dr. Poulomi Sadhukhan

 ϵ_0 3

Note that, the two ends of the surface do not contribute anything since the electric field is perpendicular to the surface

32

Gaussian

surface

E

↓E

An infinite plane carries a uniform surface charge density σ . Find its electric field.

Apply Gauss's law to this surface:

$$
\oint \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}}.
$$

In this case, $Q_{\text{enc}} = \sigma A$, where A is the area of the lid of the pillbox.

E points away from the plane (upward for points above, downward for points below).

 $\int \mathbf{E} \cdot d\mathbf{a} = 2A |\mathbf{E}|,$

So the top and bottom surfaces yield

whereas the sides contribute nothing. Thus

$$
2A |\mathbf{E}| = \frac{1}{\epsilon_0} \sigma A
$$

Hence,

$$
=\frac{\sigma}{2\epsilon_0}\mathbf{\hat{n}}
$$

E

where $\hat{\mathbf{n}}$ is a unit vector pointing away from the surface.

E I

35

More properties of electric field

- Is electric field conservative?
- How do we define potential?
- \bullet To check if E is conservative, we have to find curl of E , or closed path line integral. Remember Stoke's theorem?

Start with simplest possible configuration: Electric field due to a single charge, q

$$
\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}
$$

If we calculate the line integral of this field from point **a** to point **b**, $\int_{a}^{b} \mathbf{E} \cdot d\mathbf{l}$.
In spherical coordinates, $d\mathbf{l} = dr \hat{\mathbf{r}} + r d\theta \hat{\theta} + r \sin \theta d\phi \hat{\phi}$, so

$$
\mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} dr.
$$
Therefore,

$$
\int_{a}^{b} \mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi\epsilon_0} \int_{a}^{b} \frac{q}{r^2} dr = \frac{-1}{4\pi\epsilon_0} \frac{q}{r} \Big|_{r_a}^{r_b} = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b}\right), \qquad \int_{a}^{r_a} \frac{r_a}{r_a} dr = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b}\right), \qquad \int_{a}^{r_a} \frac{r_a}{r_a} dr = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b}\right), \qquad \int_{a}^{r_a} \frac{r_a}{r_a} dr = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b}\right), \qquad \int_{a}^{r_a} \frac{r_a}{r_a} dr = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b}\right), \qquad \int_{a}^{r_a} \frac{r_a}{r_a} dr = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b}\right), \qquad \int_{a}^{r_a} \frac{r_a}{r_a} dr = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b}\right), \qquad \int_{a}^{r_a} \frac{r_a}{r_a} dr = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b}\right), \qquad \int_{a}^{r_a} \frac{r_a}{r_a} dr = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{
$$

EPHY111L, B.Tech. Sem I, 2023 Dr. Poulomi Sadhukhan 38

Curl of Electric field

The integral around a *closed* path is evidently zero (for then $r_a = r_b$):

$$
\oint \mathbf{E} \cdot d\mathbf{l} = 0,
$$

and hence, applying Stokes' theorem,

(True for any static $\nabla \times \mathbf{E} = \mathbf{0}$. charge distribution)

Moreover, if we have many charges, the principle of superposition states that total field is a vector sum of their individual fields:

$$
\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \ldots,
$$

SO

$$
\nabla \times \mathbf{E} = \nabla \times (\mathbf{E}_1 + \mathbf{E}_2 + \ldots) = (\nabla \times \mathbf{E}_1) + (\nabla \times \mathbf{E}_2) + \ldots = 0.
$$

 \blacktriangleright For a vector to represent an electric field, its curl must be zero.

EPHY111L, B.Tech. Sem I, 2023 Dr. Poulomi Sadhukhan

Electric potential

Since the line integral is independent of the path and only depends on the end points, we can define a scalar function,

$$
V(\mathbf{r}) \equiv -\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l}.
$$

Here $\mathcal O$ is some standard reference point on which we have agreed beforehand; V then depends only on the point r. It is called the electric potential.

The potential *difference* between two points **a** and **b** is

$$
V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} + \int_{\mathcal{O}}^{\mathbf{a}} \mathbf{E} \cdot d\mathbf{l}
$$

= $-\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} - \int_{\mathbf{a}}^{\mathcal{O}} \mathbf{E} \cdot d\mathbf{l} = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}.$

Gradient of a scalar always has zero curl.

Electric potential

The potential *difference* between two points a and **b** is

$$
V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} + \int_{\mathcal{O}}^{\mathbf{a}} \mathbf{E} \cdot d\mathbf{l}
$$

= $-\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} - \int_{\mathbf{a}}^{\mathcal{O}} \mathbf{E} \cdot d\mathbf{l} = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}.$

We know from the fundamental theorem of gradients,

$$
V(\mathbf{b}) - V(\mathbf{a}) = \int_{\mathbf{a}}^{\mathbf{b}} (\nabla V) \cdot d\mathbf{l}
$$

Hence,

$$
\int_{a}^{b} (\nabla V) \cdot d\mathbf{l} = -\int_{a}^{b} \mathbf{E} \cdot d\mathbf{l}.
$$

Since, finally, this is true for *any* points **a** and **b**, the integrands must be equal:

$$
\mathbf{E} = -\nabla V.
$$

Gradient of a scalar always has zero curl.

