Mechanics

Kinematics

• The formulae that relates the above variables are as follows:

$$
v=at+v_0 \hspace{2cm} [1 \hspace{4cm}
$$

$$
r=r_0+v_0t+\tfrac{1}{2}at^2 \qquad \quad \ [2]
$$

$$
r=r_{0}+\tfrac{1}{2}\left(v+v_{0}\right) t\text{ \qquad \ \ }[3]
$$

$$
v^2 = v_0^2 + 2a(r - r_0) \qquad [4]
$$

$$
r=r_0+vt-\tfrac{1}{2}at^2 \qquad \quad \ \ [5]
$$

$$
v = u + at
$$

\n
$$
s = ut + \frac{1}{2}at^2
$$

\n
$$
s = \frac{1}{2}(u + v)t
$$

\n
$$
v^2 = u^2 + 2as
$$

\n
$$
s = vt - \frac{1}{2}at^2
$$

where:

- \bullet r_0 is the particle's initial position
- \bullet r is the particle's final position
- \bullet v_0 is the particle's initial velocity
- \bullet v is the particle's final velocity
- \bullet *a* is the particle's acceleration
- \bullet t is the time interval

Position, displacement, velocity, acceleration are *vectors*.

Time, speed are scalars.

Kinematics

• The formulae that relates the above variables are as follows:

$$
v = at + v_0
$$

\n
$$
r = r_0 + v_0 t + \frac{1}{2}at^2
$$

\n
$$
r = r_0 + \frac{1}{2}(v + v_0)t
$$

\n
$$
v^2 = v_0^2 + 2a (r - r_0)
$$

\n
$$
r = r_0 + vt - \frac{1}{2}at^2
$$

\n
$$
[5]
$$

• Above equations can be written in vector form as,

$$
\mathbf{v} = \mathbf{a}t + \mathbf{v}_0
$$
\n
$$
\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2
$$
\n
$$
\mathbf{r} = \mathbf{r}_0 + \frac{1}{2} (\mathbf{v} + \mathbf{v}_0) t
$$
\n
$$
\mathbf{v}^2 = \mathbf{v}_0^2 + 2 \mathbf{a} \cdot (\mathbf{r} - \mathbf{r}_0)
$$
\n
$$
\mathbf{r} = \mathbf{r}_0 + \mathbf{v} t - \frac{1}{2} \mathbf{a} t^2
$$
\n[5]

EPHY111L, B.Tech. Sem I, 2023 Dr. Poulomi Sadhukhan 43

Velocity & Acceleration - I

- The **position** of a particle is 3D is defined as $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$
- The **displacement** of a moving object is a vector connecting the initial to final $position, \vec{s} = \vec{r} - \vec{r}_0$
- The **velocity** of a moving particle at a time *t* is defined as, $\vec{v}(t) = \frac{d\vec{r}}{dt}$ *dt*

$$
\vec{v}(t) = \frac{d\vec{r}}{dt} = \frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} + \frac{dz}{dt} \hat{k}
$$

$$
= v_x \hat{i} + v_y \hat{j} + v_z \hat{k}
$$

● The **acceleration** of a moving particle at a time *t* is defined as, $\vec{a}(t) = \frac{d\vec{v}}{dt}$ *dt* = $d^2\vec{r}$ dt^2

$$
\vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt} \hat{i} + \frac{dv_y}{dt} \hat{j} + \frac{dv_z}{dt} \hat{k}
$$
\n
$$
= \frac{d^2x}{dt^2} \hat{i} + \frac{d^2y}{dt^2} \hat{j} + \frac{d^2z}{dt^2} \hat{k}
$$
\n
$$
= a_x \hat{i} + a_y \hat{j} + a_z \hat{k}
$$
\n
$$
\mathbf{v} = \frac{d\mathbf{r}}{dt}
$$
\n
$$
\mathbf{v} = \frac{d\mathbf{r}}{dt}
$$
\n
$$
\mathbf{v} = \frac{d\mathbf{r}}{dt}
$$

Example I

• Case I: A car is moving along a trajectory on map which can be expressed mathematically by $\vec{r}(t) = t^2 \hat{i} + 2(t+1)\hat{j}$ Calculate the speed and acceleration of the car.

$$
\vec{v}(t) = \frac{d\vec{r}}{dt} = 2t \hat{i} + 2\hat{j}
$$

$$
\vec{a}(t) = \frac{d\vec{v}}{dt} = 2\hat{i}
$$

• Case II: A car is accelerating at 2 m/s² in the *x*- direction, $\vec{a}(t)$ = 2 \hat{i} How is the position is changing in time and in which direction?

$$
\vec{a}(t) = \frac{d\vec{v}}{dt} \Rightarrow d\vec{v} = \vec{a}dt \Rightarrow \int_{t_0}^t d\vec{v} = \int_{t_0}^t \vec{a} dt' \Rightarrow \vec{v}(t) - \vec{v}(t_0) = \int_{t_0}^t \vec{a} dt' \text{ or, } \vec{v}(t) = \vec{v}(t_0) + \int_{t_0}^t \vec{a} dt'
$$

Again,
$$
\vec{v}(t) = \frac{d\vec{r}}{dt} \Rightarrow \int_{t_0}^t d\vec{r} = \int_{t_0}^t \vec{v} dt' \text{ or, } \vec{r}(t) = \vec{r}(t_0) + \int_{t_0}^t \vec{v} dt'
$$

• Two initial conditions are required to determine integration constants, $r(t_0)$ and $v(t_0)$. Given that, initial position is $r(t_0)=(0,2,0)$ and initial velocity is $v(t_0)=(0,2,0)$ at $t_0 = 0$. Therefore, $\vec{v}(t) = \vec{v}(t_0) + \int$ $t₀$ *t* $(2 \hat{i})$ *dt* '= \vec{v} (*t*₀)+2 (*t*-*t*₀) \hat{i} = 2 \hat{j} +2*t* \hat{i} and, $\vec{r}(t) = \vec{r}(t_0) + \int$ *t*0 *t* \vec{v} dt '= 2 \hat{j} + \int *t* 0 *t* $(2 t \hat{i} + 2 \hat{j})$ *dt* '= $2 \hat{j} + (t^2 - t_0^2) \hat{i} + 2(t - t_0) \hat{j} = t^2 \hat{i} + 2(t + 1) \hat{j}$

> EPHY111L, B.Tech. Sem I, 2023 Dr. Poulomi Sadhukhan 45

Condition on kinematic equations

\n- Kinematics equations:
$$
\mathbf{v} = \mathbf{a}t + \mathbf{v}_0
$$
 [1]
\n- $\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2$ [2]
\n- $\mathbf{r} = \mathbf{r}_0 + \frac{1}{2} (\mathbf{v} + \mathbf{v}_0) t$ [3]
\n- $\mathbf{v}^2 = \mathbf{v}_0^2 + 2 \mathbf{a} \cdot (\mathbf{r} - \mathbf{r}_0)$ [4]
\n- $\mathbf{r} = \mathbf{r}_0 + \mathbf{v} t - \frac{1}{2} \mathbf{a} t^2$ [5]
\n

are valid for constant acceleration and t_0 =0.

$$
\vec{a}(t) = \frac{d\vec{v}}{dt}
$$
 By integrating, $\vec{v}(t) = \vec{v}(t_0) + \int_{t_0}^t \vec{a} dt' = \vec{v}_0 + \vec{a} t$ if $t_0 = 0$ and \vec{a} is constant (indep. of time).
\n
$$
\vec{v}(t) = \frac{d\vec{r}}{dt}
$$
 By integrating, $\vec{r}(t) = \vec{r}(t_0) + \int_{t_0}^t \vec{v} dt' = \vec{r}_0 + \int_0^t \vec{v} dt' = \vec{r}_0 + \int_0^t (v_0 + \vec{a} t') dt' = \vec{r}_0 + v_0 t + \frac{1}{2} \vec{a} t^2$

Example II

Electron in an oscillating electric field

- Imagine that an electron of charge $-e$ and mass m is exposed to an electric field $\vec{E} = E_0 \sin \omega t \hat{i}$.
- Force \vec{F} acting on the electron is $\vec{F} = -e\vec{E}$, so that $\vec{a}(t) = \frac{\vec{F}}{m} = -\frac{e}{m}E_0 \sin \omega t \hat{i}$
- As an initial conditions we consider at $t = 0$, electron is at rest, at the origin.
- Effectively, we have 1D motion in x direction, so that $\frac{dv}{dt} = -\frac{e}{m}E_0 \sin \omega t \Rightarrow v(t) = v_0$ $\frac{eE_0}{m}\int_0^t \sin \omega t' dt' = v_0 + \frac{eE_0}{m\omega} (\cos \omega t - 1).$

Since,
$$
v_0 = 0
$$
 thus $v(t) = \frac{eE_0}{m\omega}$ (cos $\omega t - 1$).

- **•**We obtain the trajectory by integrating the velocity equation, $x(t) = x_0 + \int_0^t v(t') dt' = x_0 +$ $\frac{eE_0}{mc^2}(\sin \omega t - \omega t) = \frac{eE_0}{mc^2}(\sin \omega t - \omega t),$ as $x_0 = 0$.
- Note that besides an oscillating term, we also have a term which denotes drift of the electron with a constant velocity!

Kinematics in plane polar coordinate - I

We can express velocity in plane polar coordinate as, $\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt}(r\hat{r}) = \frac{dr}{dt}\hat{r} + r\frac{d\hat{r}}{dt}$. Note that, as the particle moves, vector \hat{r} also changes so that $\frac{d\hat{r}}{dt} \neq 0$.

Hence, we need to compute $\frac{d\hat{r}}{dt}$.

 $\hat{r} = \cos\theta \hat{i} + \sin\theta \hat{j}$ $\hat{\theta} = -\sin\theta \hat{i} + \cos\theta \hat{j}$

Cartesian basis vectors are fixed in direction thus they are constant w.r.t time.

Hence, $\frac{d\hat{r}}{dt} = \frac{d\cos\theta}{dt}\hat{i} + \frac{d\sin\theta}{dt}\hat{j} = -\sin\theta\,\dot{\theta}\hat{i} + \cos\theta\,\dot{\theta}\hat{j} = \dot{\theta}(-\sin\theta\,\hat{i} + \cos\theta\,\hat{j}) = \dot{\theta}\hat{\theta}$ Thus, $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} = v_r\hat{r} + v_\theta\hat{\theta}$

Thus, we have obtained an expression for velocity in terms of its radial and angular (also called tangential) components.

Kinematics in plane polar coordinate - II

Case 1: This case corresponds to motion along the radial direction, with θ held fixed ($\dot{\theta}$ = 0), so that $\vec{v} = \dot{r}\hat{r}$

Case 2: Here there is no radial motion $(r = 0)$, so velocity will be along the arc of a circle with $\vec{v} = r\dot{\theta}\hat{\theta}$.

Kinematics in plane polar coordinate - III

\n- **•** Acceleration can be computed as,
$$
\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left(\dot{r}\hat{r} + r\dot{\theta}\hat{\theta} \right) = \frac{d\vec{r}}{dt}\hat{r} + \dot{r}\frac{d\hat{r}}{dt} + \frac{d}{dt}\left(r\dot{\theta} \right)\hat{\theta} + r\dot{\theta}\frac{d\hat{\theta}}{dt}.
$$
\n- **•** This results, $\vec{a} = \ddot{r}\hat{r} + \dot{r}\left(\dot{\theta}\hat{\theta}\right) + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}\frac{d\hat{\theta}}{dt}.$
\n- **•** Since, $\hat{\theta} = -\sin\theta \hat{i} + \cos\theta \hat{j}$, thus $\frac{d\hat{\theta}}{dt} = \frac{d}{dt} \left(-\sin\theta \hat{i} + \cos\theta \hat{j} \right) = -\cos\theta \dot{\theta}\hat{i} - \sin\theta \dot{\theta}\hat{j} = -\dot{\theta}\hat{r}.$
\n

 $\mathbf{\hat{v}}$ Hence, $\vec{a} = \ddot{r}\hat{r} + \dot{r}\dot{\theta}\hat{\theta} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}(-\dot{\theta}\hat{r}) = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$

 \checkmark is due to change of radial speed, points in radial direction $\sqrt{-r\dot{\theta}^2}$ is the centripetal acceleration, pointing radially inwards \checkmark 2 $\dot{r}\dot{\theta}$ describes the Coriolis acceleration, present whenever both radial and angular velocities are nonzero, points in tangential direction.

 $\sqrt{r\theta}$ is the tangential angular acceleration, due to changing angular velocity, points in tangential direction.

Example

Consider a bead moving along the spoke of a rotating wheel. Assume both u and ω are constant. Calculate the velocity and acceleration of the bead in plane polar coordinates.

Here, $\dot{r} = u$; $\dot{\theta} = \omega$; $\ddot{r} = 0$; $\ddot{\theta} = 0$.

Thus, velocity in polar coordinate is $\vec{v} = u\hat{r} + r\omega\hat{\theta}$.

However, in this case $r = ut$, hence, $\vec{v} = u\hat{r} + ut\omega\hat{\theta}$.

The acceleration can now be computed as, $\vec{a} = -\omega^2 r \hat{r} + 2u\omega \hat{\theta} = -\omega^2 ut \hat{r} + 2u\omega \hat{\theta}$

 $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$ $\vec{a} = \ddot{r}\hat{r} + \dot{r}\dot{\theta}\hat{\theta} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}(-\dot{\theta}\hat{r}) = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$

